مقایسه روش های طبقه بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری های اراضی از تصاویر ماهواره ای لندست tm

نویسندگان

محمد حسین مختاری

m. mokhtari dept. of natur. resour. and desert studies, yazd univ., yazd, iran.گروه منابع طبیعی و کویرشناسی، دانشگاه یزد احمد نجفی

a. najafi dept. of natur. resour. and desert studies, faculty of forestry, yazd univ., yazd, iran.گروه جنگل داری، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

چکیده

طبقه بندی و تهیه نقشه کاربری های اراضی یکی از پرکاربردترین موارد در استفاده از داده های سنجش از دور است. تعدادی از روش های پیشرفته تر طبقه بندی در دهه های گذشته توسعه پیداکرده اند که از آنها می توان به شبکه های عصبی مصنوعی و ماشین بردار پشتیبان اشاره کرد. در این مطالعه از تصاویر لندستtm باقدرت تفکیک 30 متر جهت استخراج کاربری های اراضی با استفاده از دو روش طبقه بندی شبکه عصبی مصنوعی و ماشین بردار پشتیبان اقدام شد. نتایج، دقت بالای طبقه بندی های شبکه عصبی و ماشین بردار پشتیبان با کرنل شعاعی، هر کدام به ترتیب با دقت کلی 67/90 و 67/91 درصد را نشان داد. ماشین بردار پشتیبان کلاس هایی را که دارای خصوصیات طیفی مشترک بودند بهتر تفکیک کرد. همچنین در قسمت های مرزی دو نوع کاربری، ماشین بردار پشتیبان قابلیت جداسازی بهتری نسبت به شبکه عصبی داشت و مرز بین دو کلاس ملموس تر بود. با توجه به نتایج گرفته شده، هر دو روش شبکه عصبی و ماشین بردار پشتیبان برای طبقه بندی کاربری های اراضی خوب بوده، اما روش ماشین بردار پشتیبان با اختلاف 1 درصد در دقت کلی و 2درصد در ضریب کاپا بهتر بود. دقت بالای ماشین بردار پشتیبان می تواند ناشی از مرز تصمیم گیری بهینه آن باشد درحالی که شبکه عصبی نمی تواند این مرز را ایجاد کند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش‌های طبقه‌بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری‌های اراضی از تصاویر ماهواره‌ای لندست TM

Land use classification and mapping mostly use remotely sensed data. During the past decades, several advanced classification methods such as neural network and support vector machine (SVM) have been developed. In the present study, Landsat TM images with 30m spatial resolution were used to classify land uses through two classification methods including support vector machine and neural network...

متن کامل

مقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)

تهیه نقشه کاربری و پوشش اراضی برای برنامه­ریزی و مدیریت منابع طبیعی امری ضروری می­باشد. در این بین استفاده از داده­های سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کم­هزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 به­عنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...

متن کامل

مقایسة روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست 8

تهیة نقشه کاربری/پوشش اراضی، برای برنامه­ریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهوره­ای و تکنیک­های سنجش از دور،به دلیل فرآهم آوردن داده­های بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گسترده­ای در تمامی بخش­ها از جمله بخش­های کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقه­بندی­کننده­های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشةکاربری/پوشش اراضی شهرستان­های اردبیل، ن...

متن کامل

مقایسه روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست ۸

تهیه نقشه کاربری/پوشش اراضی، برای برنامه­ریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهوره­ای و تکنیک­های سنجش از دور،به دلیل فرآهم آوردن داده­های بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گسترده­ای در تمامی بخش­ها از جمله بخش­های کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقه­بندی­کننده­های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشهکاربری/پوشش اراضی شهرستان­های اردبیل، ن...

متن کامل

مقایسه ی روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و درخت تصمیم گیری در شناسایی ابر در تصاویر ماهواره ای لندست 8

مقاله­ی پیش­رو به مقایسه­ی سه روش ماشین بردار پشتیان،شبکه­ی عصبی مصنوعی و درخت تصمیم گیری با هدف شناسایی ابر می‍پردازد. وجود ابر در تصاویر ماهواره­ای اپتیکی، پیش­پردازش­های رادیومتریکی در کاربرد­های سنجش از دور را ایجاب می­کند. معمولا شناسایی ابر در تصاویر ماهواره­ای با استفاده از روش­های طبقه­بندی نظارت شده امکان پذیر می­باشد. در این مقاله تصاویر ماهواره­ای لندست 8 از دو منطقه­ی واقع در رشته­ک...

متن کامل

مقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)

تهیه نقشه کاربری و پوشش اراضی برای برنامه­ریزی و مدیریت منابع طبیعی امری ضروری می­باشد. در این بین استفاده از داده­های سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کم­هزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 به­عنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
علوم آب و خاک

جلد ۱۹، شماره ۷۲، صفحات ۳۵-۴۵

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023